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Faster, More Practical, and Higher Quality Unstructured Light Field
Photography
ANDREW ZHAO, Carnegie Mellon University, USA

Unstructured light field photography is a practical compromise between
structured light field photography, which is equipment-intensive, and tradi-
tional digital photography, which does not capture as much scene informa-
tion as structured light field photography. An implementation for refocusing
images, as described in class as assignment 4, involves (1) capturing a planar
video, (2) computing x-y shifts using template matching to align one object to
the same position in all the frames, and (3) merging the stack of frames with
a simple sum. This approach suffers from practicality and ease-of-use issues
due to the need to select a template with particular conditions, and may pro-
duce results that poorly approximate defocus blur due to artifacts from the
capture process. I propose and implement a Structure-from-Motion-based
alignment procedure to improve on practicality, and a set of 3 merging algo-
rithms based on weighting images in the stack to lessen artifacts. SfM-based
alignment meets the intended goals and also introduces major performance
improvements, one of the merging algorithms produces improved results,
and the other two leave open areas for study.

ACM Reference Format:
Andrew Zhao. 2023. Faster, More Practical, and Higher Quality Unstructured
Light Field Photography. 1, 1 (December 2023), 6 pages. https://doi.org/10.
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1 BACKGROUND

1.1 Unstructured Light Field Photography
Light Field photography is a very interesting and useful photography
technique that enables richer results (refocusing, 3D reconstruction,
etc.) than traditional photography by capturing extra dimensions
of light from a given scene. However, sampling the 4D domain of
a light field typically requires very specialized equipment to take
2D photographs at fixed intervals or known positions [Levoy and
Hanrahan 1996]. Another approach, called unstructured light field
photography, allows light field capture from consumer cameras by
using scene information to recover camera poses and correlate data
between photographs [Davis et al. 2012].
A pipeline for amateur light field photography, with the aim of

refocusing capabilities, was introduced in class as the last part of
assignment 4. The pipeline involves the following steps:

(1) Capture a series of planar image samples of a scene, with
2D movement in both axes in the plane

(2) Pick an object of focus in the scene, and compute an x-y shift
for each image that to place the object in the same image
coordinates across all frames
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(3) Merge the stack of shifted images
This process, performed on a series of all-in-focus or relatively-
focused samples, aims to produce a resulting image akin to a photo-
graph focused on the object with an aperture proportional to the
amount of movement in step (1). Importantly, refocusing is trivial
for unstructured light fields since the displacements are known, but
this unstructured capture method requires special techniques to
compute image-specific shifts. Assignment 4 also introduces one
particular implementation:

• Compute image shifts by template-matching on the focus
point

• Merge stack by performing a normalized sum
Such a method is relatively simple to implement, and produces suf-
ficient results where the selected object is in focus and surrounding
areas are defocused. However, this method suffers from several lim-
itations that both limit the usefulness of this method in practice
and cause the quality of produced results to fall behind refocused
images from structured light fields and true 2D images captured by
a lens-based camera.

1.2 Limitations and Issues
Some limitations both discussed and seen in the results of the afore-
mentioned implementation are as follows:
(I1) Refocusing requires manual selection of a template location

and template size.
(I2) Following on the above, this method can only refocus on loca-

tions with unique, non-repeating appearances.
(I3) The shape of the planar camera motion is visible as artifacts in

the refocused image.
(I4) Under planar capture assumptions, varying camera velocity

causes certain areas of blurring to be more or less intense than
others.

(I5) Planar assumptions are difficult to uphold in practice; even
under planar assumptions, rotation in the z-axis/roll-axis is
possible and negatively affects quality.

These limitations are with respect to the benchmark of digital pho-
tographs captured via a camera with lens, which we aim to replicate
in the refocusing procedure. Lens defocus blur is generally approx-
imated as a Gaussian blur [Liu et al. 2021], which I establish as a
baseline and use as inspiration towards methods of improving on
the raised issues.

2 PIPELINE IMPROVEMENTS
In this project, I aim to improve the unstructured light field pho-
tography process by addressing practicality and quality issues. Of
important note is that I plan to revise the implementation only, and
not the pipeline. This is because the abstract pipeline is a good defi-
nition of a procedure to generate refocused images while accounting
for low equipment requirements. Furthermore, the biggest issues
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seen in section 1.2 are implementation-specific, and not related to
the pipeline.

2.1 Alignment Step
Firstly, many downsides of the current implementation arise from
the choice of template-based alignment (Issues I1, I2). Among ad-
jacent works in the field that require image alignment or 3D re-
construction in unstructured capture conditions, SLAM [Levoy and
Hanrahan 1996] and Structure from Motion (SfM) [Agarwal et al.
2011] techniques are popular. Notably, Structure from Motion is a
well-known technique that applies feature matching to create cor-
respondences of 2D points across several images of the same object,
and applies stereo geometry principles to deduce 3D scene geome-
try, along with camera poses and intrinsic parameters in the process.
As such, SfM is in some ways an extension of the current implemen-
tation that applies feature matching to the in-focus template, except
that it improves accuracy by considering all features in the scene
and by refining estimates through known geometric constraints.
SfM usually relies on a fixed set of images and iteratively refines its
3D estimations, while SLAM is popular for real-time applications as
the set of image data grows over time. Accordingly, I plan to apply
SfM to improve step (2) of the pipeline, the alignment computation.
The predicted advantages are as follows:

• Streamline the refocusing process, by eliminating the need
for manual template selection

• Improve robustness, by expanding the range of patterns and
features that can be accurately focused on

• Improve algorithmic efficiency of refocusing several times
with one image stack

Furthermore, SfM opens the door to many other possibilities to
improve quality that are out of scope for this project:

• Allow non-planar capture, by using the computed camera
intrinsics and extrinsics to reproject all samples to be planar

• Compensate for rotation error in the capture process using
computed camera poses

2.2 Merging Step
The unstructured nature of the capture process causes several qual-
ity issues in refocused results (I3, I4). Figure 1 shows an example
of the issues described in I3, I4 in a refocusing with a very large
effective aperture, using the naive merging method of simply sum-
ming and normalizing the shifted image stack. Keeping the abstract
pipeline in mind, such artifacts can be compensated for in the merg-
ing step. The inputs to this step are a series of frames and their x/y
coordinate shifts to align the stack about an in-focus object, and the
output is a refocused image. Accordingly, I propose several weighted
merging schemes that assign each image a weight based on some
properties about its shift, in hopes of reducing the aforementioned
artifacts and getting closer to a gaussian blur in defocused regions.

Following the idea of a Gaussian blur, the most obvious improve-
ment would be to weight samples according to their straight-line
shift distance according to a normal distribution’s PDF. In effect,
this would be convolving an image of the shifts-per-image graph
by a Gaussian kernel, which should hopefully lessen the degree
to which the sampling path appears as an artifact in the results.

Fig. 1. Example template-based refocusing, and associated artifacts. Left:
refocused image. Top: Motion path that the camera took to capture these
frames, shaped like the letter N. Middle: blurred laptop screen, showing four
distinctive corners (I4). Bottom: Power outlet, blurred in an N-shape (I3).

Another issue that is not accounted for is varying sample density.
Weighting samples based on the local density, or inversely to the
average distance to neighbors, would ideally help solve this. How-
ever, it is not immediately obvious how density or distance should
be mathematically defined. One idea is to construct a spline from
the motion path, since frames are sequential, and compensate for
distance along the spline; however, this suffers from density vari-
ation in the spline’s shape itself. A better idea is based on the fact
that defocus blur is radially symmetric. If the shifts are viewed in
polar coordinates, the definition of "neighbor" becomes trivial, and
we can weight points based on the 𝜃 -distance to their left and right
neighbors. The hope is that this would compensate for directional
density; for example, if 3 samples lie in one sector while 1 lies in
a different one, the 3 samples should be each weighted 1/3 with
respect to the 1.
Overall, the above ideas show that this problem reduces to ap-

proximating a uniform sampling from a set of discrete samples of
arbitrary shape. Concretely, these ideas are distilled into 4 methods
for implementation:

(M1) Uniform weighting: Benchmark/control, uniformly weight all
images in the stack

(M2) Gaussian weighting: Weight images based on straight-line
shift distance using a Uniform PDF, reducing the impact of
outliers and blurring the sampling shape

(M3) Radial weighting: Weight images inversely to their local den-
sities, expressed as angular density.

(M4) Hybrid weighting: With each shift in polar form, apply Gauss-
ian weighting with the radius and Radial weighting with the
direction. Hopefully combines the best of both.
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Under this framework, the original naive method is equivalent to
(M1) uniform weighting.

3 METHODS

3.1 Pipeline Implementation
The overall pipeline for the project was implemented in Python,
based on my assignment 4 base code, but highly modified to support
fast and efficient file I/O and modularity. Frames are extracted from
video inputs, which are run through an alignment implementation
of choice (Template/SfM), which takes in an image stack and speci-
fied focus point and outputs per-image integer shifts. The merging
function accepts an image stack, the corresponding shifts, and a
weighting scheme, and produces the final refocused image.

3 Structure from Motion implementations were considered for
this project:

• Alicevision Meshroom: An extensively built-out and feature-
rich photogrammetry library. Meshroom is written in and
supposedly can be used easily as a Python library, but the
overall package, which is built primarily for dense 3D recon-
struction, ended up being overkill for camera pose estima-
tion.

• OpenMVG: A minimal SfM library consisting of several
compact binaries. Ended up being difficult to build and setup.

• ColMap: An SfM/MVG library similar to OpenMVG. The exe-
cutable was much easier to setup and use, but unfortunately
does not integrate with Python.

Ultimately, ColMap proved the most practical to use. I used the
Python pipeline I wrote to extract frames from videos, passed the
videos into ColMap, which estimated 3D feature points and camera
poses, and loaded those results back into Python for the merging
step.

After obtaining ColMap results, an additional step is required to
compute 2D shift data from 3D pose data. The 3D pose data is shared
by all possible refocus choices, but due to perspective projection,
the 2D image shifts will vary depending on the point of focus. I
considered 2 ideas for this step:

• Select an arbitrary point in 3D space, and use the camera
intrinsics and extrinsics computed by ColMap to project
this point into 2D coordinates in each image’s space. The
shifts can be computed by translating these coordinates such
that the center of the cluster is (0, 0). A possible refocusing
interface would be to display a frame, query a user mouse
click and desired distance, and compute the 3D point by
moving the specified distance down a ray projected through
the clicked 2D point.

• Allow the user to select an SfM-computed feature, for which
the depth and thus 3D coordinate is known.

The first idea has a much heavier implementation, and requires an
extra degree of input from the user. However, it has the advantage
of being able to focus on any point in space, even those without
textures or features. Since one of the goals of this project was to
eliminate the template-picking step, the second method has an ad-
vantage in ease-of-use. Overall, I ended up realizing that ColMap
actually outputs its points as a graph, mapping 3D points to the

Fig. 2. Sample result screenshot from ColMap. Note that the distinctive
N-shaped sample pattern is very accurately extracted, and the red/black
Carnegie Mellon banner visible in the backdrop of other figures can be seen
reconstructed sparsely.

corresponding 2D point in every image, and likewise in the reverse
direction. As a result, alignment computing reduces from computing
projections to a simple graph traversal. Thus, with the potential
benefit of extremely fast refocusing using existing data, I chose to
implement the second idea. In the final implementation, the user
can simply select any point, and the refocused image is generated
within seconds.

Specific parameters include a sigma value of 𝜎 = 0.35 for Gauss-
ian weighting, a maximum angle difference cutoff of 𝜋

8 for Radial
weighting, and a 75% image match requirement for features to be
focus points. On this last point, each 3D point/feature from SfM is
correlated with 2D points in corresponding images, are not always
guaranteed to match every image. Accordingly, selected refocus
points are filtered for those that are found in at least 75% of the
stack, to have a sufficient number of frames in the refocus. I found
that this threshold consistently resulted in a very feature-dense
output.

3.2 Data Collection
For evaluation purposes, I took several video segments of the same
scene, moving the camera in the N-shape recommended in assign-
ment 4 and illustrated in 1, top right. Evaluating across multiple
capture shapes would be ideal, but given the time constraints, I
focused on analyzing 3 different sizes of N capture patterns. Overall,
the analysis focused on running the 3 data sets through permuta-
tions of the 2 alignment methods and 4 proposed weighting schemes.
Runtime data was collected for programs running a Dell XPS15 9500,
with an Intel i7-10750H processor, Nvidia 1650Ti GPU, and 16GB
RAM.
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4 RESULTS + DISCUSSION

4.1 SfM Alignment
Switching Alignment to SfM resulted in several substantial improve-
ments. First, the practicality/ease-of-use was greatly improved:

• Template-matching: User must specify a template x/y posi-
tion and its x/y dimensions, and wait a substantial amount
of time for the alignment-computation step before seeing
the result.

• SfM: Poses are pre-computed, and afterwards, user selects
a focus point. Shifts are computed very quickly from pose
data, and the result is displayed, with minimal input.

In addition, the robustness has been improved, as the SfM align-
ment is somewhat capable of focusing near textureless or otherwise
challenging areas (3). In the example in Figure 3, the algorithm finds
the closest threshold-meeting feature point as the point of focus,
resulting in an approximate result. However, an implementation
using the second projection idea described in section 3.1 would truly
allow this capability as the 3D point at the roof could be specified.
Finally, I observed a substantial runtime improvement that was

not foreseen. Figure 5 shows sample runtimes to generate image
shifts for Template Matching vs SfM; SfM is much faster overall.
In addition, Template Matching is very quick (<30 seconds in most
cases) to pre-process, but requires several minutes for each refocus;
this is not good for the most common use case, which is to see
different refocusings of one image stack. On the other hand, SfM
takes a few minutes to compute camera poses, but a single-digit
number of seconds to refocus, which is orders of magnitudes better
here. With multiple refocusings, the advantage of SfM becomes
stronger. This is likely because refocusing is just a single graph
traversal step per image in 𝑂 (1), and it is far faster than a template
correlation process.

Fig. 3. Example result from focusing on the featureless ceiling. The select
focus point is blue, and the selected SfM feature is orange.

Fig. 4. Refocused results using the 4 weighting schemes. Clockwise from
top left: Uniform, Gaussian, Hybrid, Radial.

Other factors that may account for this difference include that
ColMap is very optimized, as I was running the provided CUDA
version that specifically takes advantage of NVidia GPUs. However,
this doesn’t affect SfM’s extremely fast Python runtime, nor does it
change the aforementioned principle that SfM is very efficient to
compute further refocusings.

4.2 Weighted Stack Merging
The Gaussian weighting scheme produced excellent results, while
the radial and hybrid schemes did not perform well on the examined
data set with an N-shaped movement pattern.

• Gaussian: Gaussian weighting had the anticipated positive
effects of smoothing outliers and "blurring" the sampling
path shape. The sigma value had a strong influence on the
result; as expected, high sigma values tend towards the Dirac
delta function, which in our case reduces the stack to the
single image with the lowest shift distance. Low sigma val-
ues degenerate to the Uniform weighting case. 0.35 sigma
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Fig. 5. Runtime comparison between Template matching (blue) and SfM
(green) methods, distinguishing between preprocessing (1-time per stack)
and refocusing (1-time per refocus) operations. Proportionally, template
matching spends less time preprocessing but more time computing shifts.
SfM is much faster overall.

performed well in every aperture setting, but it remains to
be seen whether this performs well across widely varying
focal lengths and other scenes. Plotting weight values versus
frame index (Figure 6) further confirms the desired behav-
ior; the sharp corners around the N, at indices 15/40, are
under-weighted, while the straight edges are weighted more
heavily, especially the components closer to the centroid of
the point cluster.

• Radial: The visual effect achieved from radial weightingwas
replacing a few dense artifacts with many, lesser artifacts.
The reason behind this is visible in Figure 6, which shows
large spikes in a few areas and somewhat flat but noisy
patterns in other areas. The original implementation actually
had far higher spikes, but capping the 𝜃 -difference to 𝜋

8
mitigated this effect. It seems that both outliers and noise
are dominating in this weighting scheme, which overall does
not produce good results.

• Hybrid: This scheme unfortunately combines the worst of
both Radial and Gaussian schemes, rather than the best of
both. Noise and outliers are very prominent, and the de-
focusing effect is reduced in all areas, causing the result to
look closer to its inputs and not a refocused image.

5 CONCLUSIONS
In this project, I developed improvements to the alignment com-
putation and stack merging steps of the unstructured lightfield
refocusing process introduced in class. I showed that using SfM

Fig. 6. Image weight vs. image index in video sequence, for the 4 different
weighting schemes. Progressing from left to right is equivalent to tracing
the shape of an N-curve; the corners appear to be around frame indices 15
and 40.

instead of template-based alignment greatly decreases runtime, im-
proves ease of use, introduces more robustness, and leaves the door
open for further unexplored improvements. I also demonstrated
that merging the shifted stack using image weights based on a nor-
mal distribution on the shift radius delivers substantial benefits to
refocused image quality, while the theorized polar-based weighting
methods performed poorly.

6 FURTHER WORK
These findings have opened several areas of potential further study,
on different topics:

• Result evaluation. Plotting weights with respect to posi-
tion along the movement spline was a good step to unveil
additional patterns that couldn’t be deduced from the refocus
results. However, defocus quality can be further evaluated
through sharpness analysis of results.

• Validate accuracy improvements. In section 2 I theorize
that SfM has higher feature matching accuracy since it cor-
roborates all features in an image; it may be worth testing
and validating this point.

• More weighting schemes. Radial and hybrid weighting
did not perform well, but I believe the polar-based theory
below them to be sound. Further investigation may be able
to arrive at new and better schemes based on a polar view
of the pattern.

• Full Python integration.While the pipeline is much more
streamlined, it is still a step away from requiring only a file
input and focus point specification since files must be copied
back and forth from ColMap. Using a Python-compatible
SfM library may be able to achieve this.
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